
Copyright 1992, Adamation    All rights reserved

observetester    Has been written to act as a testbed for the ObserveDispatch
object and general message dispatching paradigm.    It is very simple and only
includes a few interface objects.    Simply compile the program and run.   

Classes of this application:

Controller    A very simple object to hold onto some instance variables and
perform some initialization after the application has been
initialized.

ObserveDispatch This is the primary workhorse object.    It is responsible for
maintaining the list of observers that are interested in individual
actions.    In addition it makes sure the secondary actions are
forwarded to thos objects who are interested.

SimpleField A simple sub-class of TextField which contains an instance of the
ObserveDispatch object.

Other files:
observetest.nib The main nib file.    Contains the Busy Box window.
IB.proj, These files created by Interface Builder.
Makefile,
observetest_main.m,
observetest.iconheader

Topics of interest from BusyBox:

Overriding forward:: to do message dispatching (ObserveDispatch)
Using selector names as keys in a hash table (ObserveDispatch)

GENERAL DISCUSSION

An examination of the features and benefits of different paradigms of process
control in deterministic and non-deterministic systems,

or
The Use of Message Dispatching In the Implementation of Multi-threaded non-
deterministic Interactive Computer Systems.
or
What use are distributed objects anyway?

This document describes 3 different paradigms which are in use today in the
area of process flow of control within an application. By process flow I mean
the mechanism by which a program determines what its next action will be at
any given moment.

Event Driven Systems
The event driven application paradigm can be described as one in which events
occur in the environment and they are placed onto a queue from which they are
processed.

Normally the processing of the event queue is handled by a single process. A
single event may cause multiple other objects to react, but their reaction can
be characterized as a linear cascade of events through a single thread of
control.

A deterministic system usually has an event loop in which each event is pulled
off the event queue and a pre-determined action is performed based on the
event type. This method of control is indicative of the early Macintosh
system and MS Windows. The application program is completely responsible for
pulling the events off the event queue and determining what to do with them.

Responder Chains
The responder chain goes one step further up the event driven ladder. The
application does not have to explicitly determine what action will happen for
each event in the queue. A general event handling loop passes events down a
responder chain. This is the design of the NeXTSTEP environment. The event
loop pulls the events off the queue and tries to pass it to objects that are
in the responder chain. Once one of the objects responds to the event, it is
no longer passed on. The responding object is responsible for exhibiting the
desired response to the event. The response is much the same as in the first
event driven system in that a chain of events may occur as a response, but it
is still a single thread of execution.

This relaxed determinism allows for a more object oriented environment which
can be much more dynamic than the static deterministic system. It also brings
a level of simplicity to the control loop. It is generally good for single
threaded user applications.

Triggered Broadcast Systems
As a more non-deterministic system, triggered broadcast systems are an
extension of the responder chain. Instead of an event being sent down a
single responder chain, there may be a number of objects that are interested
in the occurence of an event. In this case, the event handling loop would
broadcast the event to all those objects that are interested in it. This is
well suited to an environment in which there can be multiple threads of
control. In addition to adding the broadcast mechanism, events can take on
more variety. Typically events are well defined hardware and software
entities (mouse, keyboard, timer). This is very limiting in that not all
events are of this variety. Another class of events are those defined by an
application. These events can be more temporal (a price changed, a value is
too high, etc.). These events can also be broadcast if the event queue is
expanded to include object messages as well as normal hardware event
information.

ObserveDispatch - object
This object is a general purpose implementation of message broadcasting. It
facilitates the development of Triggered Broadcast Systems. An object that
intends to broadcast messages should instantiate an ObserveDispatch object.
Certain methods within the object are designated as observable methods. These
methods will be responsible for broadcasting whenever they are called.

Example:
Glossary
Primary Function - In the broadcast paradigm, a primary function is one that
has a primary interface to the outside world. The primary function is the one
that will broadcast its designated broadcast messages.

Designated Broadcast Messages - These are the messages that an object will
broadcast while it is performing a primary function.

Problem: Given a main field in a form, how do you make a number of other
objects automatically change their values whenever the main field changes its
value.

Primary Method Designated Broadcast Message
takeIntValueFrom: ==> setIntValue:

In this implementation of message dispatching, the dispatcher does not look at
any return values from the method calls. The objects that receive the
broadcast message must determine what action they would like to take and
respond back to the originating object if that is part of their response.

Another implementation of the Dispatcher could dispatch messages synchronously
or asynchronously. When dispatched synchronously (default), the primary
function will not return until all the observers have executed their
designated broadcast messages. When broadcasting asynchronously, the primary
method does not wait for the observers to execute their designated broadcast
messages.

This implemenation is very simple and straightforward. As you look at the
size and complexity of the code you quickly realize this. But the power of
the methodology is tremendous, especially when used in an environment that
uses distributed objects as well. If you look past the simple example here
and think of other situations (database, spreadsheet, etc) it becomes apparent
how useful this might be. The code is there for the using but is merely an
example of what can be done using this paradigm.

If you have any questions or comments address them to adams@adamation.com

